Shijian Chen
Chongqing University, China
Title: 3D structured porous transition-metals poly-phosphides nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen
Biography
Biography: Shijian Chen
Abstract
The design and development of high-efficiency and non-noble metal hydrogen evolution reaction (HER) electrocatalysts with optimized nanostructures for human clean and sustainable energy systems has attracted significant research interest over the past years. Herein, self-supported transition-metals poly-phosphides (TMP) (such as CoP3, WP2) nanoneedle arrays on carbon cloth were topotactically fabricated by in situ phosphidation of a transition-metals oxides nanoneedle arrays precursor. Such a binder-free flexible HER electrocatalysts with integrated three-dimensional nanostructures can not only provide a large surface area to expose abundant active sites, but also facilitate electrolyte penetration for electrons and electrolyte ions, which exhibit superior bifunctional electrocatalytic activity and durability for both the HER and OER. In addition, density functional theory (DFT) calculations indicate a low kinetic energy barrier for H atom adsorption on the TMP surface which guarantees the excellent catalytic activity of the catalyst. The excellent electrocatalytic activity makes the present 3D structured TMP electrocatalysts promising catalysts for large scale highly pure hydrogen evolution by electrochemical water splitting.