
Jelena Popovic
Max Planck Institute for Solid State Research, Germany
Title: Interfacial effects and charge carrier chemistry in lithium electrolytes
Biography
Biography: Jelena Popovic
Abstract
Lithium electrolytes that link high ionic conductivities with high lithium transference number are rare, and believed to be essential for functional high power batteries. One effective way to prepare such materials is by engaging an interfacial effect on an oxide surface in order to demobilize the anion in liquid/solid electrolytes. The galvanostatic polarization experiments as well as the influence of surface area, salt concentration and temperature on their outcome will be discussed in details. Furthermore, significance of interfacial effects in other ionic devices will be touched upon. Rather than just facilitating high performance materials, liquid/solid electrolytes are a fruitful playground for fundamental understanding of the electrical double layer. A model glyme on muscovite mica system is a starting point for tackling the issue of ion-ion correlations in concentrated electrolytes and its effect on the Debye lengths estimated from the surface force measurements. Finally, solid polymer lithium electrolytes can be used in bilayer graphene gating experiments. Here, the electrolyte plays a vital role in the direct measurement of the high lithium diffusion coefficient.