Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Efe B. Orman

Marmara University, Turkey

Title: Electrochemical, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of peripherally and non-peripherally substituted metal free and metallophthalocyanines

Biography

Biography: Efe B. Orman

Abstract

Phthalocyanine (Pc) complexes have attracted considerable attention of many scientists and researchers due to their industrial and technological applications such as dyes and pigments, chemical sensors, photodynamic therapy, solar cells, electrochemical energy conversion and storage, electrochromic devices, photovoltaics, and catalysis. With the conjugated 18- electrons system, Pcs display ligand and/or metal based redox processes. Electrochemical redox behavior of these compounds can be modified in a broad scale by changing the nature and number of peripheral or nonperipheral substituents and the metal ion in the center. The detailed identification of their redox properties has vital importance for the determination of the possibility of the usage of novel Pc compounds in the technological applications.

In the present work, electrochemical redox behaviors of peripherally and non-peripherally substituted mononuclear metal-free and zinc (II) Pc compounds were investigated by the techniques of cyclic voltammetry and square wave voltammetry on a Pt working electrode in de-aerated nonaqueous solvent medium involving TBAP as the supporting electrolyte. The identified redox data included the half-peak potentials for the redox processes (E1/2), anodic to cathodic peak potential separations (ΔEp), peak current ratios (Ipa/Ipc for reduction and Ipc/Ipa for oxidation) and the potential difference between the first half-peak oxidation and reduction processes (ΔE1/2). Electrocolorimetry supported in-situ spectroelectrochemistry of the compounds were also studied since it is not possible to completely identify the nature of the redox processes and the influence of some side-effects such as metal coordination and aggregation.